All solutions here are suggested. Concept First will hold no liability for any errors.
Ans: C
Mass of a smartphone \sim200g
W=mg=(\frac{200}{1000})(10)=2 \text{ N}
Ans: A
F_{B}=BIL\therefore[B]=[\frac{F_{B}}{IL}]=[\frac{ma}{IL}]=\frac{\text{kg (m s)}^{-2}}{\text{A m}}=\text{kg A}^{-1}\text{ s}^{-2}
Ans: B
Ans: B
v_{2}-v_{1}=-(u_{2}-u_{1})0.67v-v_{X}=-(0-v)
\left | v_{X} \right |=\left |0.67v-v \right |=\left | -0.33v \right |=0.33v
Ans: A
Ans: B
Initial Reading = mg
Final Reading = mg-U=mg-\rho_{\text{f}}V_{\text{disp}}g=0.75mg
V_{\text{disp}}=\frac{V_{\text{ball}}}{2}=\frac{0.25m}{\rho_{\text{f}}}=\frac{0.25(100)}{1}V_{\text{ball}}=50\text{ cm}^{3}Ans: D
Ans: A
Work Done=F_{\text{eng}}\cdot d=(400)(1000)=0.4 \text{ MJ}
\eta =\frac{W_{\text{out}}}{W_{\text{m}}}
W_{\text{in}}=\frac{W_{\text{out}}}{\eta}=\frac{0.4}{0.16}=2.5\text{ MJ}
48 MJ ⇒ 1 kg
2.5MJ = \frac{1}{48}\times 2.5=0.052kg=52\text{ g}
Ans: A
w=\frac{v}{r}=\frac{v}{\frac{mv}{Be}}=\frac{Be}{m}\therefore w\propto BWhen B is increased, w increases.
Ans: B
Work Done =mgh=m(\frac{\Delta \phi}{\Delta d})h=(2)(\frac{6}{10})(2.5)=3\text{ J}
Ans: D
v=rw=r(\frac{2\pi}{T})=(3.6\times 10^{7}+6.4\times 10^{6})(\frac{2\pi}{24\times 3600})=3083.4\text{ m s}^{-1}Ans: C
pV=\frac{1}{3}Nm<c^{2}>=\frac{1}{3}\cdot N\cdot\frac{M}{N}\cdot<c^{2}>c_{\text{rms}}=\sqrt{\frac{3pV}{M_{\text{gas}}}}=\sqrt{\frac{3(1\times10^{5})(10)(3)(4)}{(\frac{29}{1000})(5000)}}=498.2\text{ m s}^{-1}
Ans: D
Q=mc\theta+ml_{\text{v}}=5(4190)(100-30)+(5)(2260000)=1.276\times 10^{7}\text{ J}Ans: B
\Delta U=Q_{\text{to}}+W_{\text{on}}=0=\Delta \text{KE}Ans: C
Ans: D
\frac{\Delta \phi}{2\pi}=\frac{\Delta x}{\lambda}=\frac{1.5\times 10^{-6}}{\frac{3\times10^{8}}{5\times 10^{14}}}=\frac{1.5\times 10^{-6}}{1}\cdot \frac{5\times 10^{14}}{3\times 10^{8}}=5\pi – 4\pi=\piAns: B
(sin\theta cos\theta)^{2}=\frac{1}{4}=sin^{2}2\theta
I_{\text{y}}=I\frac{1}{4}sin^{2}2\theta
if \theta=45^{\circ}, \sin2(45^{\circ})=0,I_{\text{y}}=0
Ans: D
\theta_{\text{min}}=\frac{\lambda}{b},\tan(\frac{\theta_{\text{min}}}{2})=\frac{\frac{D}{2}}{5.7\times 10^{16}}
\tan(\frac{\lambda}{2b})=\frac{\lambda}{26}=\frac{620\times 10^{-9}}{50\times10^{12}}=\frac{D}{2(5.7\times10^{16})}
D=7.068\times 10^{10}\text{ m}
Ans: D
Ans: C
F_{\text{old}}=\frac{Q_{1}Q_{2}}{4\pi\varepsilon_{0}d^{2}}=2 \text{ N}
F_{\text{new}}=\frac{(2Q_{1})(Q_{2})}{4\pi\varepsilon_{0}(2d)^{2}}=1 \text{ N}
Ans: B
\frac{R}{l}=G\therefore R=lGIf l=L, then R=LG
The wires are arranged in parallel.
R_{\text{eff}}=[\frac{1}{R}+\frac{1}{R}+\frac{1}{R}+\frac{1}{R}]^{-1}=\frac{R}{4}=\frac{GL}{4}Ans: A
The sum of the voltage across resistor and thermistor should be 3.0 V.
Ans: C
For filament lamp to glow more brightly, power across lamp increases.
The resistance of LDR and thermistor is inversely proportional to the light intensity and temperature respectively.
By the potential divider rule, when light intensity increases and thermistor temperature decreases, voltage across lamp will increase. Hence, power P=\frac{V^{2}}{R}, increases and lamp glow more brightly.
Ans: A
Using RHGR, the direction of magnetic field due to circular coil is into the page.
Using FLHR, the direction of magnetic force is upwards.
Ans: D
\phi=BAThe unit for B is Tesla (T) and unit for A is m^{2}.
Hence, unit for magnetic flux \phi is \text{tesla metre}^{2}
Ans: A
cos\theta_{\text{i}}=0^{\circ}, cos\theta_{\text{f}}=90^{\circ}
\left | E \right |=\left | \frac{\Delta BAN\cos\theta}{\Delta t} \right |=\left | BAN\left ( \frac{\cos\theta_{\text{f}}-\cos\theta{\text{i}}]}{\Delta t} \right ) \right |=\left | (1.8)(\pi)(0.01)^{2}(3000)\left [ \frac{\cos90^{\circ}-\cos0^{\circ}}{0.06} \right ] \right |=28.27 \text{ V}Ans: B
\frac{\text{V}_{\text{s}}}{\text{V}_{\text{p}}}=\frac{\text{I}_{\text{p}}}{\text{I}_{\text{s}}}
\text{I}_{\text{s}}=\text{I}_{\text{p}}\cdot \frac{\text{V}_{\text{p}}}{\text{V}_{\text{s}}}=\frac{(0.32)(1.4)}{12}=0.0373\simeq 38\text{ mA}
Ans: B
E=\frac{hc}{\lambda}
\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}=\frac{1}{\lambda_{3}}
\frac{1}{440}+\frac{1}{590}=\frac{1}{\lambda_{3}}
\lambda_{3}=252.03\text{ nm}
Ans: D
I=\frac{P}{A}=\frac{E}{tA}=\frac{nhf}{tA}Frequency of light is constant. Hence, greater intensity is explained by \frac{n}{tA} (no. of photons passing per unit cross-sectional area per unit time) increasing.
Ans: B
_{}^{137}\textrm{Cs}\rightarrow _{}^{137}\textrm{Ba}+_{-1}^{0}\textrm{e}
\text{M}_{\text{LHS}}=136.90709u
\text{M}_{\text{RHS}}=136.90709+5.49\times 10^{-4}=136.906379u
Mass Defect, \Delta m=7.11\times 10^{-4}u, 1u=933.75MeV
7.11\times 10^{-4}u=0.66389625 MeV=1.0622\times 10^{-13}\text{ J}
WhatsApp us at +65 8246 5685 to register for class or enquire for further information!
Concept First Physics Tuition Centre is the first and only Physics Specialist Centre in Singapore with a Fully-equipped Physics Laboratory.
CF360™ Methodology
Physics Lab
Student’s Portal
Blog
Resources
FAQ
Copyright © 2022 Concept First. All Rights Reserved.